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Abstract

The Karhunen–Loeve (K–L) decomposition method has become a popular technique to create low-dimensional,

reduced-order models of dynamical systems. In this paper this technique is applied to a multi-degree-of-freedom chain of

linear coupled oscillators with a strongly nonlinear (nonlinearizable), lightweight end attachment. By performing K–L

decomposition we show that the lightweight nonlinear attachment (possessing 0.5% of the total mass of the chain) can

affect the global dynamics of the linear chain, exhibiting nonlinear energy-pumping phenomena; that is, irreversible passive

targeted energy transfers from the linear chain to the nonlinear end attachment, where this energy is locally confined and

dissipated without ‘spreading back’ to the primary system. It is shown that the occurrence of energy pumping can be

identified by studying the dominant K–L modes of the dynamics, as well as, the energy distribution among them.

Moreover, by comparing the action of the strongly nonlinear attachment to the classical linear vibration absorber, we

show robustness of passive nonlinear energy absorption over wide parameter ranges. On the other hand, the case-sensitive

nature of K–L-based reduced-order models has always been a constraint for K–L decomposition, since one cannot

quantify a priori the error bound of such low-dimensional reduced-order models when different initial conditions are

applied to the system. To alleviate this constraint, the paper proposes a multiple correlation coefficient (MCC) as a

quantitative measure to effectively assess the applicability of a K–L-based reduced-order model derived for a specific set of

initial conditions to a small neighborhood of initial conditions containing that initial state. The derived reduced-order

models are validated through reconstruction of the system responses and comparisons to direct numerical integrations.
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Nomenclature

C stiffness of the nonlinear spring
C damping matrix
d coupling stiffness of the chain
Einput input energy
H energy dissipation measure—EMD
K stiffness matrix
M mass matrix
N( ) vector of nonlinear terms
t time variable
U matrix of the first 4 K–L modes
v displacement of the nonlinear attach-

ment

x vector in RN

X(t) displacement vector of the reduced-order
model

y0,y1,yy9 displacements of the particles of the
chain

Y(t) displacement vector of the full-order
model

e small parameter
l damping factor
l̂ K–L eigenvalue
f K–L mode shape
o0 normalized grounding stiffness
[]T transpose of a vector
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1. Introduction

The K–L decomposition or proper orthogonal decomposition (POD) is a method of representing a
stochastic system in terms of a minimum number of degrees-of-freedom. It provides a way to extract spatial
coherent structures (POMs) from a set of time series measurements. The origin of the method dates back to
1940s and 1950s when Karhunen [1] and Loeve [2] laid the theoretical foundation for the analysis. This
method has been applied extensively in various research fields, including fluid mechanics [3–5], fluid–structure
interaction problems [6], and chemical reaction–diffusion dynamics [7,8]. In fluid dynamics, Lumley [9–11]
suggested that the method can provide a concrete mathematical framework to extract coherent structures,
studying chaotic behavior due to turbulence in dynamical fluid and meteorological phenomena. Sirovich [3,12]
further applied the method to vector-valued data, and extended the application of the method from one-
dimensional to three-dimensional flow problems. In Ref. [12] the K–L decomposition method was applied to
study chaotic behavior of turbulent flows. K–L modes are used to create low-order dynamical models and the
energy of the corresponding modes are used to provide a measure of the dimensionality of the system under
consideration. Applications of K–L decomposition to structural dynamics can be found in various studies by
Cusumano et al. [13], Georgiou and co-workers [14,15], Azeez and Vakakis [16], Ma and Vakakis [17–20],
Feeny and Kappagantu [21], Kerschen and Golinval [22–24], and most recently by Trindade et al. [25],
Glosmann and Kreuzer [26], Lin et al. [27] and Iemma et al. [28].

K–L decomposition has been applied to linear as well as nonlinear dynamical problems to construct low-
dimensional models that capture accurately the dynamics. The orthogonal eigenfunctions (POMs or K–L
modes) derived by processing experimental or numerical time series measured at different positions
throughout the system can be proven to optimal in the linear case, in the sense that fewer K–L modes are
needed to account for the same amount of vibration energy, compared to modes resulting from application of
standard Galerkin or Rayleigh–Ritz procedures [29].

A well-know restriction of K–L decomposition, however, is that it is case-specific. That is, the set of K–L
modes and the associated low-dimensional model derived for a specific dynamic application, hold only for that
application, in the sense that they are expected to vary if the initial or forcing conditions of the system change.
It follows that a K–L-based reduced-order model constructed under a specific set of initial and forcing
conditions is not necessarily suitable for use in other conditions, although a small neighboring region of initial
and forcing conditions is generally considered as acceptable. To the authors’ knowledge there is no method
available to quantify the error that results when a set of K–L modes derived for a specific set of initial and
forcing conditions is used to reduce the dynamics of the system subject to ‘neighboring’ initial and forcing
conditions. In this paper we propose to use a multiple correlation coefficient (MCC) as the quantitative
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measurement to assess the range of regions of validity of a set of specific K–L modes to the dynamics of the
system under different initial or forcing conditions.

In addition, in recent works the nonlinear energy-pumping phenomenon was studied in systems of coupled
nonlinear oscillators. By energy pumping we denote the passive targeted energy transfer of vibration energy
transfers from a primary (linear) system where it is originally generated (a chain of linear oscillators in
this work) to a pre-assigned essentially nonlinear local attachment, termed nonlinear energy sink—NES
(a strongly nonlinear end attachment in this work), where the vibration energy is localized and dissipated
without ‘spreading back’ to the primary system [30–32]. In recent applications the concept of passively
transferring and dissipating energy from a primary structure to strongly nonlinear attachments has been
successfully applied to diverse engineering applications, including:
�
 shock isolation of impulsively loaded discrete and continuous vibrating systems [34];

�
 passive aeroelastic instability (flutter) suppression [35];

�
 seismic mitigation [36];

�
 drill—string instability suppression in oil industry applications [37].
In this work, we aim to apply K–L decomposition to study nonlinear energy pumping in a chain of coupled
linear oscillators (the primary system) with a strongly nonlinear (nonlinearizable) end attachment. In fact, one
of the aims of this work is through K–L decomposition to show that a lightweight, essentially nonlinear end
attachment (possessing as low as 0.5% of the total mass of the chain) can affect the global dynamics of the
system to which it is attached. In particular, by analyzing the dynamics of energy pumping through K–L
decomposition, one is able to identify the dimensionality of the governing (underlying) nonlinear dynamical
mechanism, and create reliable low-order models that be utilized for further design tasks (such as, monitoring
and diagnosis of developing faults and control of the system).

2. Energy pumping phenomena in the linear chain with nonlinear end attachment

We consider the system depicted in Fig. 1, composed of a chain of 10 strongly coupled linear oscillators
(designated as the ‘primary system’) with a strongly nonlinear (nonlinearizable) end attachment (designated as
the ‘NES’). The system possesses weak viscous damping, and the mass of the NES is assumed to be small
compared to the overall mass of the chain. The governing equations of motion of the system are given by

�€vþ �lð_v� _y0Þ þ Cðv� y0Þ
3
¼ 0,

€y0 þ �l _y0 þ o2
0y0 � �lð_v� _y0Þ � Cðv� y0Þ

3
þ dðy0 � y1Þ ¼ 0,

€yj þ �l _yj þ o2
0yj þ dð2yj � yj�1 � yjþ1Þ ¼ 0; j ¼ 1; . . . ; 8,

€y9 þ �l _y9 þ o2
0y9 þ dðy9 � y8Þ ¼ 0, ð1aÞ

where we introduce the small parameter e, 0oe51, and all other parameters are assumed to be quantities
of O(1). In addition, we assume that the system is initially at rest, and that an impulse of magnitude
F is applied at t ¼ 0 at the left boundary of the linear chain, corresponding to the following initial conditions
Fig. 1. The chain of linear coupled oscillations (the primary system) with strongly nonlinear end attachment (the NES).
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for system (1a):

vð0Þ ¼ _vð0Þ ¼ 0; ypð0Þ ¼ 0; p ¼ 0; . . . ; 9,

_ykð0Þ ¼ 0; k ¼ 0; . . . ; 8; _y9ð0þÞ ¼ F . ð1bÞ

In contrast to the classical linear vibration absorber, the proposed NES is capable of passively absorbing
broadband energy from the linear chain. The underlying reason for this broadband energy absorption
capacity is the essential (nonlinearizable) stiffness nonlinearity of the NES: since the NES possesses no
preferential energy of oscillation (as its stiffness possesses no linear component), it can engage in resonance
capture [38] with any mode of the chain (or sequentially with a set of chain modes in resonance capture
cascades [32]) at arbitrary frequency ranges. The initial conditions dictate the precise scenario of resonance
capture that is realized in each simulation, as well as the frequency content of the response of the NES.
It follows that the NES is capable of multifrequency vibration energy pumping from the linear chain, a feature
which is markedly distinct from the linear vibration absorber whose operation is narrowband. Moreover, the
previous discussion leads to the conclusion that the lightweight, essentially nonlinear local attachment may
induce global effects on the dynamics of the chain.

These claims are supported by the numerical results presented below. In Fig. 2 we present the transient
responses v(t) and y9(t) for a system with parameters e ¼ 0.05, l ¼ 0.5, C ¼ 0.1, o0

2
¼ 1, d ¼ 1 and different
Fig. 2. Numerical transient responses of the nonlinear attachment and the directly forced particle of the chain (v(t) , and y9(t)

) for impulses of different magnitudes, (a) _y9ð0Þ ¼ 1:0, (b) _y9ð0Þ ¼ 5:0, (c) _y9ð0Þ ¼ 10:0.
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magnitudes of applied impulse (unless otherwise noted, we will assume that these parameter values hold in the
following simulations). We note that when the magnitude of the impulse is small [cf. Fig. 2(a)], no significant
transfer of energy from the linear chain to the NES takes place; this is in agreement with the finding of
previous works [30–32], that energy pumping is ‘activated’ above a critical energy threshold. With an increase
of the magnitude of the impulse, the NES oscillates with significant amplitude [cf. Fig. 2(b) and (c)], indicating
the occurrence of energy pumping from the chain to the NES. Examination of Fig. 2(c) corresponding to the
highest energy level reveals two arrivals of wavepackets at the NES (the later corresponding to reflection of the
main pulse from the left boundary of the chain); the NES is capable of absorbing and dissipating energy from
both wavepackets.

To demonstrate the qualitatively different dynamics of the NES for weak and strong applied impulses, and
the broadband energy pumping that occurs in the later case, in Fig. 3 we depict the numerical wavelet spectra
of the relative response v(t)�y0(t) for impulses _y9ð0Þ ¼ 0:5 and _y9ð0Þ ¼ 4:0. We note at this point that the time
derivative of the relative response v(t)�y0(t) denotes the relative deformation of the damper of the NES, and is
directly related to the dissipation of vibration energy at the NES. The Matlab-based wavelet transform (WT)
employed is this work was based on the algorithm developed at the Université de Liège by Dr. V. Lenaerts in
collaboration with Dr. P. Argoul from the ‘Ecole Nationale des Ponts et Chaussees’. Although the algorithm
provides the opportunity to use two kinds of mother wavelets, namely Morlet and Cauchy, in the applications
presented herein only the Morlet mother wavelet has been used. The WT can be regarded as a ‘dynamic’
extension of the ‘static’ Fourier Transform, in the sense that instead of decomposing a time series (signal) in
the frequency domain using the cosine and sine trigonometric functions, alternative families of orthogonal
functions are employed which are localized in frequency and time. These families of orthogonal functions, the
so-called wavelets can be adapted in time and frequency so to provide details of the frequency components of
the signal during the time interval that is analyzed. The wavelet spectra shown below depict the amplitude of
the WT of the signal as function of frequency (vertical axis) and time (horizontal axis). Heavy shaded areas
Fig. 3. Wavelet transform spectra of the relative response v(t)�y0(t) for weak and strong applied impulses: (a) _y9ð0Þ ¼ 0:5, (b) _y9ð0Þ ¼ 4:0
(frequencies in Hz).
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correspond to regions where the amplitudes of the wavelet spectrum are high, whereas lightly shaded ones
correspond to low amplitudes of the WT. Such plots enable one to deduce the temporal evolutions of the
dominant frequency components of the signals analyzed, as well as, transitions between different modes that
participate in the transient nonlinear responses [39,40].

Referring to Fig. 3a, when the weak impulse is applied, the NES seems to engage in resonance capture only
with the lowest (in-phase) mode of the chain (at frequency 0.159Hz); this is inferred by studying the
approximate instantaneous frequency of the relative displacement (which is depicted by the continuous line
connecting the maxima of the wavelet spectrum of Fig. 3a). On the contrary, for strong applied impulse the
NES seems to engage in resonance capture with a series of modes of the chain, as inferred by the wavelet
spectrum of Fig. 3b; initially, the dynamics of the NES engages in resonance capture with the highest (anti-
phase) chain mode at 0.276Hz; following an ‘escape’ from this relatively high-frequency resonance capture the
dynamics of the NES engages in resonance with the low in-phase chain mode, before ‘escaping’ again and
engaging in resonance capture with a high-frequency chain mode, and then finally setting into final resonance
capture again with the in-phase mode. As a result, for the case of stronger applied impulse the response of the
NES possesses multifrequency content and acts as a more efficient energy absorber (and dissipater) compared
to the weak-impulse case.

To quantify the strength of energy pumping in the system we introduce at this point the following
normalized energy dissipated by the NES:

HðtÞ ¼
�l
R t

0½_vðtÞ � _y0ðtÞ�
2 dt

Einput
� 100; Einput ¼

1

2
_y9ð0Þ

2. (2a)

This represents the percentage of input energy that is dissipated by the NES at time t. Since the system
considered is passive the measure H(t) reaches an asymptotic limit, which is designated as the energy measure
of dissipation (EMD) H:

H ¼ limt!1HðtÞ �
�l
R Td

0 ½_vðtÞ � _y0ðtÞ�
2 dt

Einput
� 100. (2b)

The EMD is the energy that is eventually dissipated by the NES; in the computation we select the time
window of the integration, Td, to be sufficiently large in order to approximate as accurately as possible the
asymptotic value (2b).

In Fig. 4a we present the plot of EDM as function of the stiffness characteristic C of the NES, for impulse
strength _y9ð0Þ ¼ 4:3, for system parameters o0

2
¼ 1.0, d ¼ 2.0, and two values of damping, namely,

el ¼ 0.0125, 0.025. For comparison, we also depict the corresponding EDMs for a chain with linear (instead
of strongly nonlinear) attachment and identical parameter values. Clearly, the linear attachment proves to be
effective only in a narrow band of small stiffness values, e.g., at stiffness where the (constant) resonance
frequency of the linear attachment matches the frequency of a mode of the chain. On the contrary, the NES
proves to be more effective than the linear absorber, since it proves to be capable of absorbing a significant
part of the energy of the chain over a wider range of values of C, a feature which is due to its capacity to
engage in resonance capture and passively absorb energy from any of the modes of the chain. We note that as
much as 37% of input energy is passively absorbed and eventually dissipated by the NES, and that, even away
from the region of optimal energy pumping, the NES maintains a steady value of significant energy pumping.
In Fig. 4b we depict the ‘optimal’ normalized dissipated energy time histories H(t) (expression (2a) for
el ¼ 0.0125 and for both cases of linear and nonlinear attachments. It is interesting to note that the
consequent arrivals of wavepackets at the attachment are associated with sudden increases of the rates of
energy dissipation, which can be clearly inferred in the plot.

The previous results indicate that the local addition of (even) a lightweight (in the examples considered the
NES mass amounts to 0.5% of the total mass of the chain), strongly nonlinear NES can influence the global
dynamics of the chain. In the following sections we will study in detail this global change of the dynamics by
employing K–L decomposition, in an effort to study the dimensionality of the energy pumping phenomenon,
to understand the governing dynamical mechanism that is responsible for energy pumping, and to create
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reliable low-order models of the dynamics. Moreover, in contrast to the linear absorber whose action is
confined to a narrow range of the parameter C, the NES is capable of absorbing significant amounts of the
input energy over wide ranges of this parameter; this is due to the fact that, since the NES is lacking a
preferential resonance frequency (as it is an essentially nonlinear element), it can engage in resonance capture
and passively absorb energy from any mode of the linear chain (note that none of the chain modes possesses a
node at the point of attachment with the NES).
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3. K–L modes of the combined chain—NES system

The K–L decomposition is now employed to study the dynamics of systems (1a) and (1b). Considering a
scalar field vðx; tÞ; x 2 RN defined in some spatiotemporal domain, at a given time instant ti the system
displays a snapshot ni � vðx; t ¼ tiÞ. K–L decomposition seeks the most typical set of orthogonal functions
(termed the K–L modes) {f} that approximates the ensemble of snapshots in a least square sense. The solution
of the minimization of the residue sum of squares between the actual snapshots and their approximation using
the K–L modes leads to the following eigenvalue problem:

Kf ¼ l̂f, (3)

where K ¼ Svivi
T and f is a K–L mode shape. The corresponding eigenvalue, l̂, are the indicators of energy

captured by the corresponding K–L modes, with the dominant K–L modes corresponding to the highest
eigenvalues.

In the application considered in this work, the scalar field v includes the displacement of the 11 particles of
the chain-NES system. The so-called ‘direct method’ is used to compute the K–L modes [16–20]. In Fig. 5a we
depict the mode shapes of the four dominant K–L modes of the system for three different excitation cases as
shown in Fig. 2 (small to high) and C ¼ 0.1; for the K–L computation we used the simulated time series in the
window 0oto140, since after that time the response of the system was negligible. For comparison purposes
we also depicted the mode shapes of the four dominant K–L modes of the linear chain with no NES attached,
under identical forcing conditions (in the linear case the results of K–L decomposition do not depend on the
magnitude of the impulse, so only one set of ‘linear’ K–L modes is displayed). In the following discussion we
will be referring to the K–L modes of the chain with and without NES as, ‘nonlinear K–L modes’ and ‘linear
K–L modes’, respectively.

In Fig. 5b we display the variation of the percentage of energy (e.g., the normalized K–L eigenvalue)
captured by each of the dominant four K–L modes for C ¼ 0.1 and varying impulse magnitudes _y9ð0Þ.
Superimposed to the plot of Fig. 5b is the EMD H, indicating the efficiency of vibration energy pumping by
the NES.

Referring to the K–L decomposition of Fig. 5, we make the following observations:
(a)
 For weak applied impulse ( _y9ð0Þ ¼ 1:0) the nonlinear K–L mode shapes are nearly identical to the linear
ones (cf. Fig. 5a), and the dominant four nonlinear K–L modes capture 78.18% of the total energy of the
time series. In this case the amplitude of vibration is small, so that the nonlinear effects are also small, and
the NES is not capable of significantly affecting the dynamics of the chain; moreover, the amplitude of the
NES in the dominant nonlinear K–L modes is negligible (e.g., vE–0.0733 in the first K–L mode), and the
corresponding EMD H is also small (cf. Fig. 5b). Finally, we note that for weak impulses the nonlinear
K–L mode shapes are spatially extended (e.g., there is no spatial localization of the mode shapes).
(b)
 For strong applied impulses ( _y9ð0Þ ¼ 5:0; 10:0) the K–L decomposition results are drastically different.
Indeed, the mode shapes of the nonlinear K–L modes are markedly different from the corresponding
linear ones, which demonstrates that at higher energy levels the (local lightweight) NES affects drastically
the global dynamics of the chain dynamics; the most important effect is the higher amplitude of the NES in
the dominant nonlinear K–L modes, especially in the (most important) first K–L mode. In fact, for
stronger impulses the first nonlinear K–L mode shape becomes localized in the neighborhood of the NES
(with vE–0.744 for _y9ð0Þ ¼ 5:0), whereas the other dominant nonlinear K–L modes remain spatially
extended, with the NES, however, exhibiting finite motions. The localization of the first nonlinear K–L
mode shape at the NES for stronger impulses is an indication of transfer of energy from the chain towards
the NES, and, hence, of passive energy pumping.
(c)
 Considering the percentages of energy in the four dominant nonlinear K–L modes (cf. Fig. 5b), we note
that until the critical threshold _y9ð0Þ ¼ 1:6, the total percentage of energy captured by these modes is small,
indicating multidimensionality of the dynamics. Above that critical threshold, however, there occurs a
rapid increase of the percentage of energy captured by the first nonlinear K–L mode, indicating that this
mode becomes increasingly more dominant in the response; at the same time (as discussed previously) the
spatial shape of this mode becomes strongly localized at the NES, indicating energy pumping from the
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linear primary system (chain) to the NES. This is confirmed by the significant increase of the EMD H as
the critical threshold _y9ð0Þ ¼ 1:6 is exceeded, which shows that the increased dominance of the first,
localized K–L mode in the response is primarily responsible for enhanced energy pumping in the system.
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This conclusion is also confirmed by the observation that when this trend reverses and H decreases for
impulse magnitudes above _y9ð0Þ ¼ 4:3, the percentage of energy captured by the first (still localized at the
NES) mode also decreases, and the energy percentages of the other (non-localized) K–L modes gradually
increase.
(d)
 An additional conclusion is that in the regime of increased energy pumping (e.g., 1:6o _y9ð0Þo4:3), the
dimensionality of the dynamics of the system decreases, as the first localized K–L mode captures a higher
percentage of energy of the time series and the contribution of the remaining (non-localized) K–L modes
diminishes. In fact, for _y9ð0Þ ¼ 5:0 the four dominant K–L modes capture 85.42% of the total energy, and
the first K–L mode nearly 46%, whereas, for _y9ð0Þ ¼ 10:0 the dominant four K–L modes capture 83.68%
of the energy, and the first K–L mode 40%. This implies that in regimes of strong energy pumping the
transient dynamics of the system may be approximated by low-dimensional reduced-order models, a topic
which is discussed in the next section.
Similar conclusions are drawn from the K–L decomposition results depicted in Fig. 6, for a chain-NES
system forced by an impulse of magnitude _y9ð0Þ ¼ 4:3 and varying nonlinear stiffness characteristic C. Again,
enhanced energy pumping in this case is associated with an increase of the percentage of energy captured by
the localized first dominant K–L mode of the dynamics, and a consequent decrease of the dimensionality of
the dynamics.

In order to enhance energy pumping from the chain to the nonlinear end attachment, we now consider an
alternative two-degree-of-freedom NES (2dof NES) configuration, composed of two particles and two
strongly nonlinear stiffness in parallel to viscous dampers; the new NES configuration is presented in Fig. 7.
We wish to compare the performance of the 2dof NES to that of the single-dof NES (sdof NES) considered up
to this point. Similarly to the previous simulations the system is assumed to be initially at rest with an impulse
applied at the left boundary of the chain at t ¼ 0. Due to the alternative NES configuration used in this case,
the EMD H is defined as

H ¼
�l
R Td

0 f½_v1ðtÞ � _y0ðtÞ�
2 þ ½_v2ðtÞ � _v1ðtÞ�2gdt

Einput
� 100; Einput ¼

1

2
_y9ð0Þ

2. (4)

As in the previous NES, EMD represents the percentage of input energy that is eventually dissipated by the
two viscous dampers of the 2dof NES.

In Fig. 8 we perform K–L decomposition of the dynamics of the chain with a 2dof NES, impulse magnitude
equal to _y9ð0Þ ¼ 4:3, C1 ¼ 0.5 and varying C2. The chain parameters for these simulations were selected as,
o0
2
¼ 1.0, d ¼ 2.0, the damping as, el ¼ 0.025, and the mass of each of the two masses of the NES as, e ¼ 0.05.

Hence, in this series of simulations the 2dof NES possesses double the mass of the previously considered sdof
NES, and equals 1% the entire mass of the chain. In this case we notice that as much as 40% of the input
energy can be passively absorbed and dissipated by the 2dof NES. In Fig. 9 we study the efficiency of energy
pumping of the 2dof NES as function of input energy, for C1 ¼ 0.5, C2 ¼ 0.055. We note that the 2dof NES
dissipates more than 30% of the input energy in the chain for impulses in the range _y9ð0Þ ¼ 2:2�10. It follows
that 2dof NES provides more efficient and robust energy pumping compared to the sdof NES. In addition,
there are similar trends regarding the coherence of K–L mode shapes, the strong dominance of the first K–L
mode over the others in the regime of strong energy pumping, and the localization of the first K–L mode shape
7. The chain of linear coupled oscillations (the primary system) with strongly nonlinear two degree-of-freedom end attachment

NES).
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in the 2dof NES when C2 increases. Similar trends are observed in the K–L results of Fig. 9, for a system with
C1 ¼ 0.5, C2 ¼ 0.055 and varying impulse magnitude _y9ð0Þ.

A general conclusion from the K–L decomposition analysis carried out in this section is that the first
localized K–L mode is dominant in the strong energy pumping regime and appears to govern the dynamics of
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passive energy transfer; moreover, the increase of energy captured by the first K–L mode when strong energy
pumping occurs indicates that the dimensionality of the corresponding dynamics decreases, so that accurate
reduced-order models can be constructed by taking into account only a few leading K–L modes
(by construction these modes possess an orthogonal structure). Another interesting observation regarding
the system with a sdof NES is that the four leading (dominant) K–L modes are similar, both in terms of mode
shape and in terms of energy distribution for the two cases of enhanced energy pumping, e.g., when _y9ð0Þ ¼ 5:0
and _y9ð0Þ ¼ 10:0. This suggests that the mode shape derived from one excitation condition can be used as a
low-dimensional model for another excitation case under the condition that their K–L modes are similar. This
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finding paves the way for using a single low-dimensional model over a range of different initial and forcing
conditions. In the following section, we study the construction of low-dimensional reduced-order models for
the case of the sdof NES.
4. Reduced-order modeling and multiple correlation coefficient

The nonlinear system governed by the system (1a) and (1b) can be expressed by the equation

M €YðtÞ þ CYðtÞ þ KYðtÞ þNðYðtÞ; _YðtÞÞ ¼ 0, (5)

where M, C and K are the mass, damping and stiffness matrices, Y(t) ¼ [v,y0,y1,y,y9]
T the vector of

displacements, and NðYðtÞ; _YðtÞÞ the nonlinear term. Performing K–L decomposition, a (11� 4) matrix U is
generated composed of the four leading K–L modes. Ideally, to construct accurate reduced-order models one
would need to include in the analysis the K–L modes that capture a total of 99% of the energy of the simulated
time series (e.g., K–L modes with corresponding sum of eigenvalues equal to 99% of the sum of all
eigenvalues). In this section we focus on the system depicted in Fig. 1 with parameters e ¼ 0.05, l ¼ 0.5,
C ¼ 0.1, o0

2
¼ 1, d ¼ 1; in this case it can be shown that 7–8 K–L modes capture 99% of the energy of the time

series. Instead, in the following analysis we used only the leading 4 K–L modes in the order reduction process,
since this number was deemed sufficient for the accurate reconstruction of the signals; at the end, one expects
relatively small errors in the reduced-order signal reconstructions.

Assuming that all the vectors have zero mean value, the system response Y(t) is expressed as

YðtÞ ¼ UXðtÞ. (6)

Substituting Eq. (6) into Eq. (5), pre-multiplying by (MU)�1, and taking into account the orthogonality
properties of the matrix of K–L modes U, one obtains the following lower order model:

€XðtÞ þ Cnew
_XðtÞ þ KnewXðtÞ þ ðMUÞ�1NðXðtÞ; _XðtÞÞ ¼ 0, (7)

where Cnew ¼ (MU)�1CU, and Knew ¼ (MU)�1KU. Eq. (7) can be solved and then used to reconstruct the
system response through (6). When a different matrix U consisting of K–L modes corresponding to a certain
initial condition is substituted into Eq. (7), the low-order model corresponding to this initial condition is
constructed.

The low-dimensional model based on the K–L modes derived from analysis of the time series corresponding
to the initial condition _y9ð0Þ ¼ 1:0 (when no significant energy pumping occurs as shown in Fig. 2a) is written
below:

€XðtÞ þ

0:0268 �0:0030 �0:0023 �0:0031

�0:0032 0:0301 0:0039 0:0054

�0:0032 0:0052 0:0290 0:0055

�0:0037 0:0059 0:0046 0:0313

2
666664

3
777775

_XðtÞ þ

1:0842 0:0299 �0:0326 �0:0203

0:0318 1:3794 0:0232 �0:0176

�0:0328 0:0225 1:0386 �0:1288

�0:0170 �0:0202 �0:1274 1:8031

2
666664

3
777775

XðtÞ þ

�0:0037 �0:2409

0:0045 0:4140

�0:0017 0:4155

0:0027 0:4782

2
666664

3
777775

CðDÞ3

�CðDÞ3

" #
¼ 0 ð8Þ
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D ¼ v� y0 ¼ ½�0:0733 0:0879 �0:0335 0:0538 �XðtÞ

� ½�0:2361 0:4082 0:4177 0:4747 �XðtÞ.

The initial condition _y9ð0Þ ¼ 1:0 is transformed to _Xð0Þ ¼ ½ 0:5784 0:3919 0:1815 �0:3590 �T in the low-
order model. The reconstruction of the time series for y1(t) using the above model is shown in Fig. 10a. We can
see that the reconstruction of the system response compares well with the direct numerical simulation, which
suggests that the four K–L-based low reduced-order model is sufficient to accurately reconstruct the system
response. It follows that the 4dof, K–L-based reduced-order model is capable of modeling the dynamics of the
original 11dof system.

Similarly we can construct a K–L-based reduced-order model for the energy-pumping regime. Expression
(9) represents the reduced-order model based on the four dominant K–L modes derived by analyzing the time
series corresponding to the initial condition _y9ð0Þ ¼ 5:0 (as shown in Fig. 2b):

€XðtÞ þ

0:0867 �0:0235 0:0145 0:00701

�0:0236 0:0340 �0:0055 �0:0027

0:0160 �0:0061 0:0288 0:0019

0:0090 �0:0034 0:0022 0:0261

2
666664

3
777775

_XðtÞ þ

1:3114 �0:2560 0:2567 �0:3550

�0:1266 1:2681 �0:0264 0:2153

0:0796 0:0012 1:5308 �0:3307

�0:0142 0:0573 �0:1874 1:4463

2
666664

3
777775

XðtÞ þ

�0:2422 �2:0108

0:0928 0:7682

�0:0753 �0:5182

�0:0512 �0:2874

2
666664

3
777775

CðDÞ3

�CðDÞ3

" #
¼ 0 ð9Þ
Fig. 10. Exact versus reconstructed responses: (a) y1(t) ( simulation, reconstruction) using the 4dof reduced-

order model (8); (b) y9(t) ( simulation, reconstruction) using the 4dof reduced-order model (9).
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D ¼ ½�0:8055 0:3087 �0:2504 �0:1702 �XðtÞ

� ½�0:3754 0:1414 �0:0098 0:0582 �XðtÞ.

This model is used to reconstruct the time response of y9(t) as shown in Fig. 9b. The initial condition
becomes _Xð0Þ ¼ ½ 1:0519 3:0691 1:5448 �1:9886 �T. Again, good agreement with direct numerical
simulation is observed, validating the accuracy of the reduced-order model in this case as well.

In order to quantify the applicability of the K–L-based reduced-order models to different initial conditions
(or excitations) than the ones for which they were originally derived, an indicator that can measure the
similarity of the system response under different initial conditions is required. The absolute error between
different responses can be used as such indicator, but it has the disadvantage that it lacks comparability;
indeed, one cannot decide easily how much error constitutes the maximum absolute tolerance. In this work we
propose the use of a MCC as the indicator for providing a normalized error estimation when comparing
system responses subject to different initial conditions. The MCC is traditionally applied to study data
regression and is closely related to residual variance and standard error of estimate in the regression.

In Ref. [33] the MCC was introduced to study Ŷ , the regression of a variable Y by multiple variables X1,
X2,yXk, with each variable representing a data series. Assuming that all variables are normalized and have
zero mean, the MCC is defined as

R2
YŶ
¼

Xk

i¼1

Bi 	
X

X iY

 !,X
Y 2; (10)

where matrix B consists of the regression coefficients. The MCC gives an indication of how well the variable Y

can be predicted by the multiple variables X1, X2,y,Xk; R2
YŶ

is related to the residue sum of square error
between the prediction and the actual data series, where

R2
YŶ
¼ 1�

SSres

SStol
¼ 1�

P
ðY � Ŷ Þ2P

Y 2
and Ŷ ¼ BX .

In this work, the low-order model derived by analyzing the response corresponding to a specific initial
condition (for example, _y9ð0Þ ¼ 5:0) is based on the matrix U5 composed of its own first 4 K–L modes. Let us
denote by X5(t) the displacement vector computed by the low-order model derived for the initial condition
_y9ð0Þ ¼ 5:0, and Y5(t) the displacement vector of the full-order model; then U5 provides the regression
coefficients in B. By substituting X5(t), the displacement variables of Y5(t) and U5 into Eq. (10) we can
compute the MCCs of the variables in Y5 by X5. When we use this specific low-order model to approximate the
response for other initial conditions (such as when _y9ð0Þ ¼ 10:0), we still use the matrix U5 (based on the 4
K–L modes derived by the initial condition _y9ð0Þ ¼ 5:0) to compute X10, rather than the matrix U10 derived
from the other initial condition (in this case _y9ð0Þ ¼ 10:0). Then, the vector X10 and matrix U5 are substituted
into Eq. (10) to compute the MCCs of the response variables in Y10. This process is repeated for initial
conditions _y9ð0Þ in the range 0.5–10 to derive the result depicted in Fig. 11. Considering these results, one can
see that the MCC of v(t) changes drastically from 0.081 to 0.937 in the region where _y9ð0Þ ranges from 0.5 to 2.
This corresponds to the region of points of inflection in the curves of Fig. 5b. This suggests that the MCC
curve is closely related to the different dynamical state of the system, and is a clear quantitative indicator of
the transferability of the low-dimensional models of the system. From this figure we can see that to study
systems with initial conditions _y9ð0Þ ranging from 1.8 to 10.0, the low-dimensional model of Eq. (8), which
corresponds to _y9ð0Þ ¼ 5:0, can provide 90% of the accuracy that each specific low-dimensional model
corresponding to different initial conditions can provide. Another important feature of the MCC is its
computational efficiency. In real practices once a reduced-order model has been setup under a set of initial
conditions, the matrix B has been decided, Vectors X and Y can then be measured as the output of the
reduced-order model system and the full-order system. MCC for different initial conditions can be
easily computed using Eq. (10). The operation count for computing MCC scales like O(kN2) if variable Y has
N samples of data. This indicator can provide a fast and efficient way to measure the applicability of the
reduced-order model under different conditions.
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In Fig. 12 we provide a comparison between exact and reduced-order reconstructed responses. With dashed
line we present the reconstruction of the response of y9(t) corresponding to initial impulse _y9ð0Þ ¼ 10:0, using,
however, the low-dimensional model of Eq. (8) created for an impulse of magnitude _y9ð0Þ ¼ 5:0. In this case,
the initial condition becomes _Xð0Þ ¼ ½ 2:1037 6:1383 3:0895 �3:9773 �T. We see that the reconstruction is
comparable to the simulation. In this case the residue sum of squares error is 24.4% comparing with the error
of 23.5% when we use its own low-dimensional model created for an impulse of magnitude _y9ð0Þ ¼ 10:0. This
shows the feasibility of the application of a low-dimensional model to a wider range of system conditions.
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5. Concluding remarks

In this paper we present numerical evidence of energy pumping in a mechanical system consisting of a chain
of linearly coupled oscillators with an essentially nonlinear, single-degree-of-freedom (sdof) end attachment.
The chain was forced by an impulse applied to its free end, and the capacity of the nonlinear end attachment to
passively absorb and locally dissipate a part of the impulsive energy was studied. We showed that, when the
imparted energy exceeds a certain threshold, passive energy pumping from the chain to the NES occurs. The
Karhunen–Loeve (K–L) decomposition method was applied to derive the dominant proper orthogonal modes
of the system in the different regimes of the dynamics of the system. We showed that in the energy-pumping
regime the dominant K–L mode localizes at the NES, and captures a high portion of the energy of the time
series. In fact, we showed that in the energy pumping regime the leading K–L mode becomes increasingly more
dominant over the other K–L modes, compared to the low-energy regime of the dynamics where no significant
energy pumping occurs.

A study of the K–L mode shapes in the different regimes of the motion reveals that when the energy of the
system is sufficiently high, the lightweight strongly nonlinear end attachment, although local and lightweight
(it possesses 0.5% of the total mass of the chain), it can influence the global structure of the dynamics, e.g., the
spatial distributions of all dominant K–L mode shapes. This due to the fact that the strongly nonlinear
attachment possesses no linear stiffness term, and, hence, lacks a preferential resonance frequency; it follows
that, depending on its instantaneous energy level, the strongly nonlinear attachment is capable of engaging in
resonance capture with any mode of the chain, thus introducing non-local effects in the chain dynamics.

As shown in this work the efficiency and robustness of energy pumping can be enhanced by using a 2dof
NES possessing two essential elements, though the main conclusions regarding the results of K–L
decomposition in the energy pumping regime in this case are similar to the sdof NES.

In high dimensional or spatially extended dynamical systems, the construction of effective low-dimensional,
reduced-order models is essential for design, monitoring and diagnosis of faults, and control purposes. We
showed that K–L-based reduced-order models can be effective in reconstructing the dynamics of the high-
dimensional systems considered herein, both before and in the energy-pumping regime. Moreover, we
demonstrated the transferability of the reduced-order models for different initial conditions. We introduced a
quantitative indicator, the MCC, which was shown to be effective in assessing the transferability of the derived
K–L based low-dimensional models to varying initial conditions of the system; this knowledge is important
when using such reduced-order models for control purposes or for other design applications.
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